import os import sys from datetime import datetime, timedelta import h5py from netCDF4 import Dataset import numpy as np class Getimerg: """ Contains methods for opening and reading GPM/IMERG-Early/Late/Final files and combine the 30-min rates into 1-h estimated precipitation. :param self.glons: # of IMERG lon points (global at 0.1-deg resolution) :param self.glats: # of IMERG lat points (global at 0.1-deg resolution) :param self.maskval: nan fill value for masking arrays """ def __init__(self, logging: int, prectype: str, precdir: str): """ Instantiating class :param logging: level of logging for diagnostics :param prectype: IMERG 'final', 'late', or 'early' products :param precdir: Input directory of IMERG data """ self.glons = 3600 self.glats = 1800 self.maskval = np.float32('nan') self.logging = logging self.prectype = prectype self.precdir = precdir def get_times(self, dt_str, deltamin=0): """ Get datetime components from provided datetime str :param dt_str: DateTime str in YYYYmmddHHMM Format :param deltamin: Minutes to add to dt_str, defaults to 0 :returns: time_str, year, month, month_abbrev, day, hour_min """ # Instantiate the datetime object if not deltamin: # No deltamin provided or defaults to 0 datetime_obj = datetime.strptime(dt_str, '%Y%m%d%H%M') else: # deltamin has been provided datetime_obj = datetime.strptime(dt_str, '%Y%m%d%H%M') + \ timedelta(minutes=+deltamin) # Parse components into str vars time_str = datetime_obj.strftime('%Y-%m-%d %H:%M:%S') year = datetime_obj.strftime('%Y') month = datetime_obj.strftime('%m') month_abbrev = datetime_obj.strftime('%b') day = datetime_obj.strftime('%d') hour_min = datetime_obj.strftime('%H%M') return time_str, year, month, month_abbrev, day, hour_min def get_landsea_mask(self): """ The function reads in the land-sea mask in netCDF4 format as obtained from the GES DISC GPM data server. returns: imerg_mask global 2D array. """ imerg_mask = np.zeros([self.glons, self.glats], dtype=np.float) infile = '/raid1/sport/data/IMERG/GPM_IMERG_LandSeaMask.2.nc4' if os.path.isfile(infile): ncid = Dataset(infile) nc_attrs = ncid.ncattrs() nc_dims = [dim for dim in ncid.dimensions] nc_vars = [ncvar for ncvar in ncid.variables] if self.logging > 1: print("NC_ATTRS: ", nc_attrs) print("NC_DIMS: ", nc_dims) print("NC_VARS: ", nc_vars) imerg_mask = np.squeeze(ncid.variables['landseamask'][:][:]) ny = imerg_mask.shape[0] nx = imerg_mask.shape[1] if self.logging > 1: print('S-N dim: ', ny) print('W-E dim: ', nx) print('self.glats', self.glats) print('self.glons', self.glons) return imerg_mask def get_imerg(self, yyyymmddhhmm00: str, yyyymmddhhmm30: str): """ Reads 30-min IMERG precip files, merges into prec1h, obtains lon/lat, precip attributes, and returns variables. :param yyyymmddhhmm00: Input date/time string at 00 minutes :param yyyymmddhhmm30: Input date/time string at 30 minutes past hour. :returns: precip1h_transpose, lons, lats, units, _FillValue """ precip00 = np.zeros([self.glons, self.glats], dtype=np.float) precip30 = np.zeros([self.glons, self.glats], dtype=np.float) yyyy00 = yyyymmddhhmm00[0:4] mm00 = yyyymmddhhmm00[5:7] dd00 = yyyymmddhhmm00[8:10] hh00 = yyyymmddhhmm00[11:13] min00 = yyyymmddhhmm00[14:16] yyyy30 = yyyymmddhhmm30[0:4] mm30 = yyyymmddhhmm30[5:7] dd30 = yyyymmddhhmm30[8:10] hh30 = yyyymmddhhmm30[11:13] min30 = yyyymmddhhmm30[14:16] if self.logging > 1: print("Individual date/time strings:") print(" --minute00: ", yyyy00, mm00, dd00, hh00, min00) print(" --minute30: ", yyyy30, mm30, dd30, hh30, min30) imergdir = self.precdir + '/' + yyyy00 + mm00 + '/' if self.logging > 0: print(' IMERG datadir: ' + imergdir) if self.prectype == 'final': beginstr = '3B-HHR.MS.MRG.3IMERG.' elif self.prectype == 'late': beginstr = '3B-HHR-L.MS.MRG.3IMERG.' elif self.prectype == 'early': beginstr = '3B-HHR-E.MS.MRG.3IMERG.' else: print("{0} is not a supported precip data type.".format( self.prectype)) print("Exiting script...") sys.exit() f1name = f'{beginstr}{yyyy00}{mm00}{dd00}-S{hh00}{min00}00.HDF5' f2name = f'{beginstr}{yyyy30}{mm30}{dd30}-S{hh30}{min30}00.HDF5' f1 = h5py.File(imergdir + f1name, "r") f2 = h5py.File(imergdir + f2name, "r") name = '/Grid/lat' lats = f1[name][:] name = '/Grid/lon' lons = f1[name][:] name = '/Grid/precipitationCal' # dimensions are time(1),lon(glons),lat(glats) in hdf5 file precip00[:][:] = f1[name][0:1, :, :] precip30[:][:] = f2[name][0:1, :, :] # To generate 1-h precip, it's not a simple sum since each 30-min # IMERG precip "rate" is in mm/hr units, so we must average the # 30-min rates to get mm/hr for the whole hour. precip1h = 0.5 * (precip00 + precip30) # transpose array to get to python [lat][lon] convention precip1h_transpose = np.transpose(precip1h, (1, 0)) units = f1[name].attrs['Units'] _FillValue = f1[name].attrs['_FillValue'] if self.logging > 1: print('\nprecip00: ', precip00) print('\nprecip30: ', precip30) print('\nprecip1h: ', precip1h) print("\nLONS array and size: \n", lons, lons.size) print("LATS array and size: \n", lats, lats.size) print('precip1h shape: ', precip1h.shape) print('precip1h_transpose shape: ', precip1h_transpose.shape) print('IMERG units: ', units) print('Fill Value: ', _FillValue) if self.logging > 0: print(' --IMERG files: ', f1name, f2name) print(' --precip00 / precip30 / precip1h maxima: ', np.amax(precip00), np.amax(precip30), np.amax(precip1h)) return precip1h_transpose, lons, lats, units, _FillValue def azimuth_avg(self, array2d, nlats, nlons, lat2d, lon2d, dist2d, beardiff2d, clat, clon, rad1, rad2): """ -Method to mask input 2D array based on radial range thresholds, by compass quadrants, and by shear-relative quadrants. -Masking first occurs between rad1 and rad2 radii surrounding a [TC] center point, then by compass quadrants, then shear-rel quadrants. :param array2d: Input 2D array to maskm :param lat2d: Input 2D lats at all points of array2d :param lon2d: Input 2D lons at all points of array2d :param dist2d: Input 2D distances between ctr point and array2d pts :param beardiff2d: 2D array of diffs between shear vector and bearing :param clat: Center latitude of [tropical cyclone] :param clon: Center longitude of [tropical cyclone] :param rad1: 1st input radius from [TC] center point on which to mask :param rad2: 2nd input radius from [TC] center point on which to mask """ array_bin_quad = np.zeros([4, nlats, nlons], dtype=np.float) array_bin_qshr = np.zeros([4, nlats, nlons], dtype=np.float) quad2d = np.zeros([nlats, nlons], dtype=np.float) array_bin = np.where(dist2d > rad1, array2d, self.maskval) array_bin = np.where(dist2d <= rad2, array_bin, self.maskval) array_bin_quad[0][:][:] = \ np.where(lat2d > clat, array_bin, self.maskval) array_bin_quad[0][:][:] = \ np.where(lon2d <= clon, array_bin_quad[0][:][:], self.maskval) array_bin_quad[1][:][:] = \ np.where(lat2d > clat, array_bin, self.maskval) array_bin_quad[1][:][:] = \ np.where(lon2d > clon, array_bin_quad[1][:][:], self.maskval) array_bin_quad[2][:][:] = \ np.where(lat2d <= clat, array_bin, self.maskval) array_bin_quad[2][:][:] = \ np.where(lon2d <= clon, array_bin_quad[2][:][:], self.maskval) array_bin_quad[3][:][:] = \ np.where(lat2d <= clat, array_bin, self.maskval) array_bin_quad[3][:][:] = \ np.where(lon2d > clon, array_bin_quad[3][:][:], self.maskval) array_bin_qshr[0][:][:] = \ np.where(beardiff2d <= 90, array_bin, self.maskval) array_bin_qshr[1][:][:] = \ np.where(beardiff2d <= 360, array_bin, self.maskval) array_bin_qshr[1][:][:] = \ np.where(beardiff2d > 270, array_bin_qshr[1][:][:], self.maskval) array_bin_qshr[2][:][:] = \ np.where(beardiff2d <= 180, array_bin, self.maskval) array_bin_qshr[2][:][:] = \ np.where(beardiff2d > 90, array_bin_qshr[2][:][:], self.maskval) array_bin_qshr[3][:][:] = \ np.where(beardiff2d <= 270, array_bin, self.maskval) array_bin_qshr[3][:][:] = \ np.where(beardiff2d > 180, array_bin_qshr[3][:][:], self.maskval) quad2d[:][:] = np.where(beardiff2d <= 360, 1, quad2d[:][:]) quad2d[:][:] = np.where(beardiff2d <= 270, 3, quad2d[:][:]) quad2d[:][:] = np.where(beardiff2d <= 180, 2, quad2d[:][:]) quad2d[:][:] = np.where(beardiff2d <= 90, 0, quad2d[:][:]) return array_bin, array_bin_quad, array_bin_qshr, quad2d